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Abstract
Magnetic tunnel junctions (MTJs) require the growth of a thin (∼20 Å)

dielectric metal oxide layer, such as Al2O3, on a ferromagnetic metal layer,
such as Co, CoFe, or CoNiFe. The atomic assembly mechanisms that combine
to form a uniformly thin metal oxide layer on these metal surfaces are not well
understood. The application of molecular dynamics simulations to the growth
of metal and metal oxide multilayers that involve more than one metal element
has not been possible using the conventional interatomic potentials. A recently
proposed modified charge transfer ionic–embedded atom method potential
appears to correctly enable the charge transfer between oxygen and numerous
metal elements to be modelled in a format amenable for molecular dynamics
studies. Here we parametrize this charge transfer ionic–embedded atom
method potential for the quinternary O–Al–Ni–Co–Fe system so that a direct
molecular dynamics simulation of the growth of the tunnelling magnetoresistive
multilayers can be realized.

1. Introduction

Magnetic tunnel junctions (MTJs) composed of a thin (∼20 Å) dielectric oxide (such as
AlOx ) [1–3] tunnel barrier layer sandwiched between ferromagnetic metals (such as Co, CoFe,
or NiCoFe) [1, 2] exhibit large changes in electrical resistance when an external magnetic field
is applied [4]. This tunnelling magnetoresistance (TMR) effect is being developed for a novel
magnetic random access memory (MRAM) [1, 5–9]. The TMR effect can also be used for
magnetic field sensing [2, 10, 11] and spin injection [12] in semiconductor devices [13].

The atomic scale structure of the oxide layer together with defects at the interfaces between
the oxide and metal layers can significantly impact the performance of the devices described
above. It has also been difficult to grow the ultra-thin oxide layers without incorporating
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small holes in the layer. Because of this, MTJs usually have an oxide layer thickness above
a threshold of about 10 Å [14, 15]. Efforts to reduce the oxide layer thickness are aided by
a fundamental understanding of the atomic assembly and defect incorporation mechanisms
during the growth of these metal and metal oxide multilayers. Molecular dynamics (MD)
simulation of vapour deposition provides a potential means to achieve this understanding and
has been successfully used to help study the vapour deposition of metal multilayers [16–18].
Its application to MTJ growth has been impeded by the lack of suitable interatomic potentials
for multi-metal oxide systems.

Unlike close packed metal multilayers, atomic interactions in metal and metal oxide
heterostructures can be either predominantly ionic or metallic depending on the local atomic
surroundings. Because of this, MD simulations of oxidation must be carried out using
a charge transfer interatomic potential [19, 20]. The initially proposed charge transfer
potential [19, 20] did not include the physics of valence and as a result could only be used
for single-metal–oxygen binary systems [21, 22]. By incorporating a simplified physics
of valence, the charge transfer potential can be modified to address systems involving
oxygen and numerous metal elements [23]. Here we parametrize such a modified charge
transfer potential for the quinternary O–Al–Ni–Co–Fe system needed to study the growth of
NixCoyFe1−x−y /AlOx /Cox Fe1−x multilayers [1, 2].

2. Charge transfer potentials for metal and metal oxide heterostructures

Simulations of metal and metal oxide heterostructures require an interatomic potential that is
transferable from pure metal or pure oxygen local configurations where the ionic interactions
are neglected to fully developed metal oxide regions where the ionic interactions are strong.
Charge transfer potentials seek to achieve this by writing the total potential energy of the
system, E , as a sum of non-ionic energy, EN, and ionic energy, EI:

E = EN + EI. (1)

The ionic energy, EI, depends on the charges on atoms. The charges on atoms dynamically
vary depending on local environments. Equation (1) can be normalized such that EI becomes
zero when the charges on the atoms are zero. The non-ionic energy, EN, can then be viewed
simply as the potential energy of the pure metal or pure oxygen systems, and its transferability
to oxide systems is addressed by the additional charge transfer ionic interaction, EI, as the
system is progressively ionized. A charge transfer potential for a metal and metal oxide
heterostructure then requires two models to separately define EN and EI.

For the O–Al–Ni–Co–Fe system discussed here, the embedded atom method (EAM)
potential originally proposed by Daw and Baskes [24] can be used for EN, and a recently
proposed charge transfer ionic model (CTIP) [23] provides an expression for EI. Unlike
earlier CTIP models [19, 20], which incorrectly predicted non-zero charges in pure metal alloy
systems, the recent CTIP guarantees zero charges in any metallic systems. As a result, EI

drops to zero in a pure metal and the EAM + CTIP model for EN + EI is essentially equivalent
to the EAM model of EN. This not only ensures the fidelity of the metal systems, but also
allows us to independently parametrize EN for the metal system of interest and then address
the EN + EI potential for its oxide system.

2.1. Non-ionic embedded atom method potential

The EAM potential originally proposed by Daw and Baskes [24] has been successfully used
for modelling metals, especially the closely packed fcc metals. A unified EAM potential
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database has recently been developed for a variety of metals, including most of those of
interest in magnetic layers [16, 25]. This EAM potential database is based upon an alloy EAM
model [26] and has been used to explore the atomic assembly mechanisms of vapour deposited
metal multilayers [16–18]. The non-ionic potentials for the Al, Ni, Co, and Fe interactions are
adapted from this EAM database.

In the EAM approach, the total energy for a system of N atoms is expressed as

EN = 1
2

N∑

i=1

iN∑

j=i1

φi j(ri j) +
N∑

i=1

Fi (ρi ) (2)

where φi j(ri j) is the pair energy between atoms i and j separated by a distance ri j, i1, i2, . . . , iN

is a list of all neighbours of atom i , and Fi is the embedding energy arising from embedding
an atom i into a local site with an electron density background ρi . If the cut-off distance of
the potential is less than half of the periodic length of the computational cell, all neighbours
of a given atom can be found in one computational cell; hence, no image atoms need to be
considered. However, the formulism used here assumes no limit on the cut-off distance. As a
result, atom j and many of its images can become the neighbours of atom i (even the images
of i can be i ’s neighbours). Our list notation of i1, i2, . . . , iN concisely represents this scenario
because no additional periodic boundary conditions need to be considered as long as all of the
image atoms are included in this list.

The generalized elemental pair potential is represented by

φ(r) = A exp[−α( r
re

− 1)]

1 + ( r
re

− κ)20
− B exp[−β( r

re
− 1)]

1 + ( r
re

− λ)20
(3)

where re is the equilibrium spacing between nearest neighbour atoms in the elemental structure,
and A, B , α, and β are four adjustable parameters. Note that as r increases the denominator of
the right-hand side of equation (3) becomes very large. This provides a natural cut-off distance
for the potential, which is controlled by parameters κ and λ.

The local electron density, ρi , can be calculated using

ρi =
iN∑

j=i1

f j (ri j ) (4)

where f j (ri j) is the electron density contribution from atom j at the site of atom i . The electron
density function is expressed using the same form as the attractive part of the pair potential:

f (r) = fe exp[−β( r
re

− 1)]

1 + ( r
re

− λ)20
(5)

where only fe is an additional fitting parameter. To create an elemental metal embedding energy
function that works well with a wide range of conditions, the embedding energy is defined by
different expressions in different electron density ranges. These expressions are constrained to
have matching values and slopes at their junctions. They are listed in the following equations:

F(ρ) =
3∑

i=0

Fni

(
ρ

ρn
− 1

)i

, ρ < ρn, ρn = 0.85ρe (6)

F(ρ) =
3∑

i=0

F−
i

(
ρ

ρe
− 1

)i

, ρn � ρ < ρe (7)

F(ρ) =
3∑

i=0

F+
i

(
ρ

ρe
− 1

)i

, ρe � ρ < ρo, ρo = 1.15ρe (8)
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F(ρ) = Fe

[
1 − ln

(
ρ

ρs

)η](
ρ

ρs

)η

, ρo � ρ (9)

where ρe is the electron density at the lattice site of the equilibrium elemental metal structure
and ρs , Fni , F−

i , F+
i (i = 0, 1, 2, or 3), Fe, and η are fitting parameters. Equations (2)–(9)

sufficiently define the potentials for elemental metals.
For metal alloys, the only other functions needed are the pair cross potentials between

different species a and b. Using the normalized alloy EAM model [26], the pair potential
between two different species, a and b, can be constructed from their elemental potentials:

φab(r) = 1

2

[
fb(r)

fa(r)
φaa(r) +

fa(r)

fb(r)
φbb(r)

]
. (10)

Equations (2)–(9) are used for the elemental functions of all the metal elements (Al, Ni,
Co, and Fe) and the constructed pair cross potential of equation (10) for most pairs (Al–Co,
Al–Fe, Ni–Co, Ni–Fe, and Co–Fe). While the pair cross potential of equation (10) is not
directly fitted to the metal alloy properties, it gives reasonable values of heats of solution [27].
In the NiCoFe/AlOx /NiCoFe MTJ multilayers, chemical composition close to that of the
NiAl intermetallic compound may be encountered during the growth of aluminium on the
Ni0.65Co0.20Fe0.15 layer (prior to oxidation of the aluminium layer). To more realistically
reflect this scenario, we have used equation (3) for the Al–Ni pair cross potential to fit it to the
cohesive energy of the B2 phase of the NiAl intermetallic compound.

The general formula, equation (3), is also used to represent the elemental oxygen pair
potential and all pair cross potentials between oxygen and the metals (O–Al, O–Ni, O–Co, and
O–Fe). The electron density for oxygen was fitted using

f (r) = fe exp[−γ ( r
re

− 1)]

1 + ( r
re

− ν)20
. (11)

Unlike equation (5), where β and λ are the same as those in the attractive part of the pair
potential, equation (11) introduces two different parameters, γ and ν, to provide sufficient
flexibility for the fitting of oxide properties.

With the potential parameters for the metals known, the remaining parameters for the
oxygen–metal (Al, Ni, Co and Fe) system are derived using properties of the binary oxides
involving Al, Ni, Co, and Fe, namely the corundum phase of Al2O3 and Fe2O3 and the B1 phase
of CoO and NiO. These oxides define four different oxygen lattice sites, which correspond to
four equilibrium electron densities, ρe,i (where i = 1, 2, 3, or 4). We arrange the four oxides
so that ρe,1, ρe,2, ρe,3, and ρe,4 represent an increasing sequence of the electron densities
and fit with a spline function. This ensures that the oxygen embedding energy function
goes smoothly through the appropriate range of electron densities while correctly defining
the structures, lattice constants, cohesive energies, and bulk moduli for each oxide. When all
the other potential functions are given, the lattice constants, cohesive energy, and bulk modulus
of an oxide i are determined by the oxygen embedding energy as well as its first and second
derivatives, at least within a small electron density range near ρe,i , ρmin,i � ρ < ρmax,i , where
ρmin,i < ρe,i and ρmax,i > ρe,i . A quadratic spline function can be used to achieve this. A
cubic spline can be used to extend the oxygen embedding energy to the lowest electron density
range ρmin,0 � ρ < ρmax,0, where ρmin,0 = 0 and ρmax,0 = ρmin,1. This results in cubic spline
functions for the oxygen embedding energy of the form

F(ρ) =
3∑

i=0

Fi, j

(
ρ

ρe, j
− 1

)i

, for ρmin, j � ρ < ρmax, j , j = 0, 1, 2, 3, 4. (12)
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In equation (12) ρe, j ( j = 1, 2, 3, or 4) is the equilibrium electron density at the oxygen site of
the j th oxide and Fi, j (i = 0, 1, 2, or 3 and j = 0, 1, 2, 3, or 4) and ρe,0 are additional fitting
parameters. Note that equation (12) is expressed in a general cubic function form. Quadratic
splines for j = 1, 2, 3, or 4 correspond to F3, j = 0.

2.2. Charge transfer ionic potential

When a metal is oxidized, metal atoms lose electrons to become cations and oxygen atoms gain
electrons to become anions. The ionic interactions between cations and anions of metal oxides
have often been described as the Coulomb interactions assuming fixed charges on the cations
and anions [28–33]. The approach can be easily implemented in efficient MD algorithms
and has been widely used to study bulk oxides [33, 34]. However, this approach cannot be
used for metal/metal oxide heterostructures. First, the fixed charge model can only be used to
study cases where the entire system is in one oxidation state. During metal oxidation or the
growth of a metal/metal oxide structure, numerous oxide states with different charges on atoms
can exist in the system. Furthermore, the fixed charge model cannot ensure charge neutrality
during the simulation of oxidation, during which the oxygen concentration within the system
continuously increases. Second, metal oxidation simulation using the fixed charge model
requires injection of charged oxygen ions into the surface. They are brought from the far field,
where in reality the oxygen atoms would be neutral. The fixed charge model hence introduces
significant extra Coulomb energy and overestimates the latent heat of oxygen condensation
by more than 10 eV/atom [23]. This can significantly affect the predicted atomic assembly
sequence (as has been shown, an adatom energy change of only 5 eV can completely change
the atomic structures of vapour deposited metal films) [16, 17]. Finally, a fixed charge potential
cannot be used to investigate the interface between a metal and its oxide where the potential
must smoothly switch between one dominated by ionic interactions (in the oxide region) to
one dominated by metallic interactions (in the metal region).

Charge transfer ionic potentials have been proposed by Rappe and Goddard [19] and
Streitz and Mintmire [20]. Using the Streitz–Mintmire formulism [20], the total ionic energy,
EI, is expressed as

EI =
N∑

i=1

(
χi qi + 1

2 Ji q
2
i

)
+ 1

2

N∑

i=1

iN∑

j=i1

Ci j(ri j , qi , q j) (13)

where χi is the electronegativity of atom i [20], Ji (Ji > 0) is referred to as an ‘atomic
hardness’ [35] or a self-Coulomb repulsion [19], qi is the charge on atom i , and Ci j (ri j , qi , q j )

is the Coulomb energy between atoms i and j when separated by a distance ri j . The first
term on the right-hand side of equation (13) essentially describes the self-ionization energy of
atoms. Under the system neutral condition,

∑N
i=1 qi = 0, any increase in the magnitude of

charges on ions always results in an increase in the self-ionization energy of single elemental
systems. However, if opposite charges are induced between neighbouring atoms (as in metal
oxides), then an increase in the magnitude of charges reduces the Coulomb energy between
any neighbouring positive and negative charges. The trade-off between self-ionization energy
and Coulomb energy then defines a set of equilibrium charges on atoms qi (i = 1, 2, . . . ,

or N) that minimizes the total energy of equation (13) under the system neutral constraint
of

∑N
i=1 qi = 0. The equilibrium charges can always be dynamically solved during MD

simulations [21, 22]. Replacing the fixed charges with this set of equilibrium charges then
resolves the many problems of the fixed charge models discussed above.

Rather than assuming a point charge on an ion, i , a more realistic approach is to assume
that the ion has a diffused electron density distribution, σi , which is dependent on the radial
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distance, r , from its core. This can be written

σi (r, qi) = Ziδ(r) + (qi − Zi)
ξ3

i

π
exp(−2ξi r) (14)

where δ(r) is a delta function [δ(r) = 1 at r = 0 and δ(r) = 0 at r �= 0], Zi is an effective core
charge (treated as a fitting parameter), and ξi is a parameter defining the spread of the electron
distribution. Zi satisfies the condition 0 � Zi � Ni , where Ni is the total nuclear charge of the
atom. Since

∫
σi (r) dV = qi , equation (14) is a spatially distributed representation of a charge

qi . Using equation (14) to integrate the Coulomb interaction and substituting the results into
equation (13) yields normalized ionic energy as [20, 23]

EI =
N∑

i=1

Xi qi + 1
2

N∑

i=1

N∑

j=1

Vi j(ri j)qi , q j (15)

where

Xi = χi + kc

iN∑

j=i1

Z j Pi j(ri j ), (16)

and

Vi j(ri j ) = Jiδi j + kc

iN ( j)∑

k=i1( j)

Qik(rik). (17)

Here for ξi = ξ j = ξ

Pi j (r) =
(

3
8ξ + 3

4ξ2r + 1
6ξ3r2

)
exp(−2ξr) (18)

Qik(r) = 1

r
− 1

r

(
1 +

11

8
ξr +

3

4
ξ2r2 +

1

6
ξ3r3

)
exp(−2ξr) (19)

and for ξi �= ξ j

Pi j (r) = −
(

ξi +
1

r

)
exp(−2ξir) +

ξiξ
4
j exp(−2ξi r)

(ξi + ξ j )2(ξi − ξ j)2
+

ξ jξ
4
i exp(−2ξ jr)

(ξ j + ξi )2(ξ j − ξi )2

+
(3ξ2

i ξ4
j − ξ6

j ) exp(−2ξi r)

r(ξi + ξ j )3(ξi − ξ j )3
+

(3ξ2
j ξ

4
i − ξ6

i ) exp(−2ξ j r)

r(ξ j + ξi )3(ξ j − ξi )3
(20)

Qik(r) = 1

r
− ξiξ

4
j exp(−2ξir)

(ξi + ξ j )2(ξi − ξ j )2
− ξ jξ

4
i exp(−2ξ j r)

(ξ j + ξi )2(ξ j − ξi )2

− (3ξ2
i ξ4

j − ξ6
j ) exp(−2ξi r)

r(ξi + ξ j )3(ξi − ξ j )3
− (3ξ2

j ξ
4
i − ξ6

i ) exp(−2ξ j r)

r(ξ j + ξi )3(ξ j − ξi )3
. (21)

In equations (16) and (17), kc = 14.4 eV Å e−2 is the Coulomb constant (e represents
the electron charge), δi j = 1 when i = j and δi j = 0 when i �= j , and the notation
i1( j), i2( j), . . . , iN ( j) means all the j atoms (i.e., j and its images) that are within the cut-off
distance of atom i .

Vi j(ri j) defined in equations (17), (19), and (21) involves a summation of 1/ri j . The direct
summation of the slowly decaying function 1/r imposes a serious divergence problem. Note
that the total contribution of these divergent terms to the system energy is 1

2

∑N
i=1

∑iN
j=i1

qi q j

ri j
.

It can be replaced by fast convergent Ewald summations [23, 36, 37] under the system neutral
condition. The Ewald approach was therefore used to modify Vi j to eliminate the divergence
problem.
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Equation (15) is a function of both atom positions and atom charges. During simulations,
charges are dynamically solved from the energy minimization conditions at each time step.
Once charges are known, equation (15) becomes a function of atom positions only. Because
charges are solved from energy minimization conditions, their derivatives have no effects on
forces or stresses. Equation (15) can then be used to calculate forces and stresses as if the
charges were constant.

The Streitz–Mintmire CTIP model, equation (15), has been combined with an EAM
potential for non-ionic interactions to study a binary Al–O system [20]. This Al–O potential
was used in MD to simulate the oxidation of aluminium surfaces [21, 22]. However, this CTIP
model has been found to have two problems.

To illustrate the first problem, consider a simple system containing only a positive point
charge and a negative point charge. According to equation (13), the ionic energy can be written

EI = χ1q1 + χ2q2 +
1

2
J1q2

1 +
1

2
J2q2

2 + kc
q1q2

r12
. (22)

Under the system neutral condition, q1 = −q2, equation (22) becomes

EI = (χ1 − χ2)q1 +

(
J1 + J2

2
− kc

r12

)
q2

1 . (23)

It can be seen that equation (23) only has a minimum when J1+J2
2 − kc

r12
> 0 (i.e., a concave

parabolic curve). To ensure the existence of the energy minimum and well defined equilib-
rium charges, the spacing between the atoms must be larger than a critical value rc = 2kc

J1+J2
.

When this is not satisfied, equation (23) ceases to have a minimum (it becomes a convex
parabolic curve), and EI continues to decrease as the magnitude of charge increases. This
results in infinitely large magnitudes of charges and overflow of the simulations. This effect
occurs because the Coulomb interaction incorrectly overpowers the self-ionization energy in
equation (22) at a short atomic spacing. In earlier applications of CTIP models [20–22], the
problem was implicitly overcome. First, the short range repulsion in non-ionic potentials
was formulated to prevent the atomic spacing from becoming too small. Second, the CTIP
parameters, such as J1 and J2, were chosen to be reasonably large so that they defined a small
rc. In fact, we discovered that the original CTIP model and parametrizations for the Al–O
system [20] were always unstable and always caused calculation overflow when combined
with a standard EAM potential for Zr and Al [16, 25] to simulate ZrO2 or Al2O3 surfaces. The
constraints imposed by the original CTIP model upon the model parameters were not physical
and prevented merging of the CTIP with the metal alloy EAM potential database [16, 25].

In addition, the original charge transfer model can only be used to study oxygen–single-
metal (binary) systems. The non-ionic potential, EN, must fully describe the potential for any
non-ionized part of the systems (such as metal elements and metal alloys). In order for the
full charge transfer CTIP + EAM potential to be equivalent to the EAM potential of metals,
EN + EI must reduce to EN in metals. Equation (15) indicates that EI = 0 when all the charges,
qi , become zero. This means that the CTIP model gives correct energy as long as it correctly
predicts zero charges in any metal systems. Note here that metal alloys can have minor charges
from first principles. This charge contribution,however, has already been incorporated in EAM
and the zero charges are required to comply with the notion that EAM fully describes metal
systems.

The Streitz–Mintmire original CTIP model yielded zero charges for aluminium atoms
in either bulk aluminium or a local aluminium region of the Al/AlOx multilayers [20, 23].
However, this was achieved only when a single metal was involved. To illustrate, consider
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again the simple pair of point charges. Setting the first derivative of EI with respect to q1 equal
to zero, equation (23) yields

q1 = (χ2 − χ1)r12

(J1 + J2)r12 − 2kc
. (24)

Equation (24) gives a zero charge, q1, only when χ1 and χ2 are identical (i.e., 1 and 2 are of the
same species). This is because when all atoms have the same charge properties no atoms have
a preference to become positive charges on introducing negative charges to their neighbours.
In metal alloys, however, neighbouring metal atoms can be different species (with different
charge parameters). As a result, the original CTIP model predicts incorrectly non-zero charges
in unoxidized metal alloy regions. A physical method to ensure a zero charge in metal alloys
needs to be developed in order for the model to be used in systems involving more than one
metal element.

A modified CTIP model has been proposed to resolve both problems of the earlier CTIP
models [23]. It was based on the incorporation of the notion that the charge on an atom must
be bounded by its valence. The ionic potential, equation (15), is then modified by the addition
of two charge constraining energy terms:

EI =
N∑

i=1

Xi qi + 1
2

N∑

i=1

N∑

j=1

Vi j(ri j )qi · q j +
N∑

i=1

ωS[−(qi − qi,min)](qi − qi,min)
2

+
N∑

i=1

ωS(qi − qi,max)(qi − qi,max)
2 (25)

where S(x) is a step function [S(x) = 0 when x � 0 and S(x) = 1 when x > 0], qi,min and
qi,max are boundaries for charge qi , and ω is a constant. It can be seen that when charge qi

is within the boundaries, qi,min � qi � qi,max, equation (25) is equivalent to equation (15).
However, when the charge falls out of this range, an additional energy penalty is imposed.
The magnitude of the energy penalty can be controlled by parameter ω. By setting the charge
boundaries of metal atoms between zero and the maximum number of their valence electrons,
and the charge boundaries of oxygen atoms between −2 and 0, an energy minimization of
equation (25) with a relatively large value of ω can ensure that metal atoms only lose electrons
until all of their outer shell electrons are transferred while oxygen atoms only acquire electrons
until their outer shell is completely filled. With equation (25), the critical atomic spacing for
the occurrence of calculation instability becomes rc = 2kc

J1+J2+4ω
[23]. A moderate value of

ω = 40.0 produces an rc = 0.18 Å, even at J1 = J2 = 0 where the old CTIP model would
predict rc = ∞ [23]. As a result, stable simulations are guaranteed under any conditions for
any choice of CTIP model parameters. This occurs because the charge boundary constraining
energy terms overpower the Coulomb energy through imposition of valence. It should be
noted that ω has a physical meaning and can be determined by first principle calculations.
However, its precise value is not needed here because the only effect ω has is to set up the
charge boundaries, and any ω value above 20 leads to essentially the same result.

Equation (25) ensures that metal atoms can only have positive charges and oxygen atoms
can only have negative charges. It then naturally results in zero charges in pure metal systems.
Consider, as an example, a pair of aluminium and nickel atoms. Assume that the aluminium
atom seeks to become a positive charge by inducing a negative charge on the nickel atom. The
nickel atom, however, cannot be negatively charged because it is set to be in the positive charge
range. This would force a zero charge on the nickel atom. The aluminium atom, on the other
hand, cannot become positively charged because it does not have an anion to interact with
(note that in this simple case the system neutrality requirement also forces a zero aluminium
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Table 1. EAM parameters for metals.

Metal re (Å) fe ρe ρs α β A (eV)

Al 2.863 92 1.203 78 17.517 47 19.900 41 6.613 17 3.527 02 0.314 87
Ni 2.488 75 2.211 49 30.370 03 30.371 37 8.383 45 4.471 17 0.429 05
Co 2.505 98 2.315 44 31.891 66 31.891 66 8.679 63 4.629 13 0.421 38
Fe 2.481 99 2.314 53 24.595 73 24.595 73 9.818 27 5.236 41 0.392 81

Metal B (eV) κ λ Fn0 (eV) Fn1 (eV) Fn2 (eV) Fn3 (eV)

Al 0.365 55 0.379 85 0.759 69 −2.807 60 −0.301 44 1.258 56 −1.247 60
Ni 0.633 53 0.443 60 0.820 66 −2.693 51 −0.076 44 0.241 44 −2.375 63
Co 0.640 11 0.500 00 1.000 00 −2.541 80 −0.219 42 0.733 38 −1.589 01
Fe 0.646 24 0.170 31 0.340 61 −2.534 99 −0.059 60 0.193 06 −2.282 32

Metal F0 (eV) F1 (eV) F2 (eV) F−
3 (eV) F+

3 (eV) η (eV) Fe (eV)

Al −2.83 0.0 0.622 25 −2.488 24 −2.488 24 0.785 91 −2.824 53
Ni −2.70 0.0 0.265 39 −0.152 86 4.585 68 1.013 18 −2.708 39
Co −2.56 0.0 0.705 85 −0.687 14 3.092 13 1.077 02 −2.565 84
Fe −2.54 0.0 0.200 27 −0.148 77 6.694 65 1.182 90 −2.551 87

Pair re (Å) α β A (eV) B (eV) κ λ

Al–Ni 2.715 79 8.004 43 4.759 70 0.442 54 0.683 49 0.632 79 0.817 77

charge). Since zero charges are guaranteed, the CTIP potential can be superimposed on any
EAM potential so that the full CTIP + EAM potential is transferable to the EAM potential
when used for a metal or metal alloy system.

Equation (25) is a quadratic type of potential with respect to qi . It has been demonstrated
that the minimum ionic energy and the equilibrium charges defined by equation (25) for a
neutral system (

∑N
i=1 qi = 0) can be effectively solved using an integrated conjugate gradient

technique and a Newton–Raphson method [23].

3. Parametrization

A relatively long cut-off distance of 12 Å was used for the potential. This cut-off distance
addresses the long range Coulomb interactions relatively well. It does not affect the properties
of the existing EAM potential [16, 25] because equations (3) and (5) enable the potential to be
virtually cut off at 7 Å or below.

Since the modified CTIP model has no effect on the potential that describes the metal
system, the existing EAM potential database [16, 25] can in principle be used directly for
metal alloys. To better fit the oxide properties, however, we have rescaled fe and ρe by
a common factor and slightly adjusted the third derivative of the embedding energy at the
equilibrium electron density and the corresponding splined functions. Because only the third
derivative is modified and the embedding energy is expressed as a function of relative electron
density rather than absolute value (see equations (6)–(9)), the modified EAM potentials do not
change the cohesive energy, vacancy formation energy, lattice constants, and elastic constants
predicted by the old parameters [16, 25]. The revised EAM parameters for the metals of
interest here are shown in table 1.

Instead of using the alloy EAM model, equation (10), the pair cross potential between
aluminium and nickel was fitted to the experimental cohesive energy of the B2 phase of NiAl
using equation (3). All of the fitted EAM parameters for the metals are summarized in table 1.
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Table 2. CTIP parameters for all elements.

Element qmin (e) qmax (e) χ (eV e−1) J (eV e−2) ξ (Å−1) Z (e)

O −2 0 2.000 00 14.995 23 2.144 0.000 00
Al 0 3 −1.479 14 9.072 22 0.968 1.075 14
Ni 0 2 −1.708 04 9.109 54 1.087 1.444 50
Co 0 2 −1.677 65 8.657 73 1.055 1.544 98
Fe 0 3 −1.905 87 8.998 19 1.024 1.286 12

Table 3. Parameters for EAM pair potentials between oxygen and oxygen as well as oxygen and
all other metals.

Pair re (Å) α β A (eV) B (eV) κ λ

O–O 3.648 57 5.440 72 3.597 46 0.349 00 0.574 38 0.080 07 0.393 10
O–Al 2.985 20 8.497 41 4.521 14 0.097 38 0.381 21 0.189 67 0.952 34
O–Ni 2.957 32 7.965 28 4.424 11 0.135 21 0.253 32 0.470 77 0.655 24
O–Co 2.595 86 8.252 24 4.375 48 0.257 14 0.340 29 0.374 19 0.508 43
O–Fe 3.079 92 7.523 09 4.133 30 0.171 08 0.398 69 0.223 35 0.343 80

Table 4. EAM parameters for oxygen electron density function.

fe γ ν

1.394 78 2.117 25 0.374 57

With the metal EAM potentials determined, all of the other parameters were fitted to give
optimum predictions of the experimental cohesive energies, lattice constants, elastic constants,
and crystal structures of the four binary metal oxides: corundum Al2O3 and Fe2O3, and B1
CoO and NiO. First, the charge bounds, qmin,i and qmax,i , were chosen to match the valences
of all species, table 2. To set these charge bounds, we used a value of ω = 20. The charge
parameter, ξ , characterizes the spread distance of the charge, which was taken to be inversely
proportional to the atomic radius. To be consistent with earlier work [23], we fitted the other
charge parameters under the constraint that the anion charge in all four equilibrium bulk oxides
is −1.933.

To construct the oxygen embedding energy function, the electron density range for the
splined function of each oxide was chosen as ρmin,i = 0.5(ρe,i−1 + ρe,i ) for i = 2, 3, or 4 and
ρmax,i = 0.5(ρe,i + ρe,i+1) for i = 1, 2, or 3. Only ρmin,1 and ρmax,4 are not defined. We then
took ρmin,1 as 0.85ρe,1 and ρmax,4 as ∞. Finally, we chose ρmin,0 = 0 and ρmax,0 = ρmin,1 to
extrapolate the embedding energy function from ρmin,1 to zero electron density.

Using the constraints discussed above, a conjugate gradient method was used to fit all of
the remaining model parameters. The fitting included three minimizations: the minimization
of deviation of the predicted cohesive energies, lattice constants, and single-crystal elastic
constants of the four oxides from those of experimental values; the minimization of forces
on atoms and stresses on the bulk oxides to ensure the correct lattice constants and stability
of crystals; and the minimization of the differences of the oxygen embedding energy and its
derivatives at each splined junction to yield a smooth oxygen embedding energy function. The
fitted parameters deduced by this procedure are listed in table 2 for all of the charge parameters,
table 3 for the EAM pair potentials between oxygen and oxygen as well as oxygen and all other
metals, table 4 for the oxygen electron density, and table 5 for the splined oxygen embedding
energy function.
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Table 5. EAM parameters for the splined oxygen embedding energy function.

i F0,i (eV) F1,i (eV) F2,i (eV) F3,i (eV) ρe,i ρmin,i ρmax,i

0 −1.564 89 −1.391 23 1.771 99 1.598 33 54.629 10 0 54.629 10
1 −1.589 67 1.306 36 9.810 33 0.000 00 64.269 53 54.629 10 65.240 78
2 −1.541 16 2.028 21 6.562 40 0.000 00 66.212 02 65.240 78 66.567 97
3 −1.517 98 2.309 79 7.695 82 0.000 00 66.923 91 66.567 97 70.577 48
4 −1.190 82 4.129 36 10.323 38 0.000 00 74.231 05 70.577 48 ∞

Table 6. Elemental and compound metal properties predicted by the metal EAM potentials.

Elements or compounds Al Ni Co Fe NiAl

Structure fcc fcc hcp bcc B2

Lattice constants (Å) a 4.05 3.52 2.51 2.87 2.99
c — — 4.08 — —

Cohesive energy (eV) 3.58 4.45 4.41 4.29 4.32

Vacancy formation energy (eV) 0.65 1.68 1.82 1.65 —

Elastic constants (eV Å−3) C11 0.67 1.54 1.83 1.43 0.56
C12 0.38 0.92 0.86 0.85 0.85
C13 0.38 0.92 0.79 0.85 0.85
C14 0.00 0.00 0.00 0.00 0.00
C33 0.67 1.54 2.29 1.43 0.56
C44 0.18 0.78 0.40 0.73 0.46
C66 0.18 0.78 0.48 0.73 0.46

4. Characteristics of the CTIP + EAM potential

We have plotted the components of the EAM potentials in figures 1–3. The EAM metal
potentials [16, 25] were well fitted to the elemental cohesive energies, vacancy formation
energies, lattice constants, and elastic constants. Table 6 shows metal properties predicted by
the potentials.

In our parametrization, the model predictions of the metal oxide properties were optimized
to the reference values while the previously fitted metal properties were not affected. The oxide
properties predicted by the optimized potentials are compared in table 7 with the reference
values. Here, the experimental cohesive energies [16, 25, 38, 39], lattice constants [40, 41],
and elastic constants [39, 41] were used as the reference values. It can be seen from table 7
that the predicted cohesive energies and lattice constants are precise while the elastic constants
are in reasonable agreement with the experimental values.

To examine the responses of charge on atoms to the environment, the CTIP model was
used to calculate the charge as a function of isotropic lattice strain for the four oxides. Results
for the anion charges are plotted in figure 4. It indicates that charge decreases as the lattices are
pulled apart. Unlike the original CTIP model where charge becomes unstable when the lattice
is highly compressed [23], the anion charge calculated here was bounded to approximately
−2e even when the lattice was compressed to a hydrostatic strain of −0.3.

The cohesive energies of the four oxides were also calculated as a function of hydrostatic
strain from −0.3 to 1.0, and the results are plotted in figure 5. No instability problems occurred
when the lattice was highly compressed. Reasonable energy versus strain curves were obtained
over a wide range of strains.
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Figure 1. Characteristics of the EAM pair potentials: (a) elemental metal pair potentials;
(b) oxygen–metal and oxygen–oxygen pair potentials; and (c) metal pair cross potentials.
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Table 7. Calculated and experimental properties of oxides.

Oxides Al2O3 Fe2O3 NiO CoO

Structure Corundum Corundum B1 B1

Lattice a Cal. 4.759 5.025 4.168 4.258
constants Exp. 4.759 5.025 4.168 4.258
(Å) c Cal. 12.991 13.735 — —

Exp. 12.991 13.735 — —

Cohesive energy Cal. −6.461 −4.978 −4.762 −4.733
(eV/formula) Exp. −6.461 −4.978 −4.762 −4.733

Elastic C11 Cal. 3.065 1.513 1.413 1.571
constants Exp. 3.108 1.515 1.319 1.633
(eV Å−3) C12 Cal. 0.653 0.191 0.709 0.950

Exp. 1.025 0.342 0.756 0.919
C13 Cal. 0.842 0.114 0.709 0.950

Exp. 0.701 0.096 0.756 0.919
C14 Cal. −0.168 −0.179 0.000 0.000

Exp. −0.147 −0.078 0.000 0.000
C33 Cal. 3.387 1.657 1.413 1.571

Exp. 3.119 1.421 1.319 1.633
C44 Cal. 0.818 0.502 0.749 0.500

Exp. 0.921 0.536 0.681 0.519
C66 Cal. 1.206 0.661 0.749 0.500

Exp. 1.042 0.587 0.681 0.519

5. Illustrative simulation

We now demonstrate that the CTIP + EAM potential can be used to simulate the growth of
metal/metal oxide multilayers using an MD method [16–18]. An fcc Ni0.65Co0.20Fe0.15 crystal
containing 120 (224̄) planes in the x direction, three (111) planes in the y direction, and 16
(22̄0) planes in the z direction was created as the initial substrate. Under periodic boundary
conditions in the x and z directions and a free boundary condition in the y direction, about six
monolayers of Ni0.65Co0.20Fe0.15 were first deposited on the (111) substrate surface using an
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Figure 6. Simulated oxidation of Al/Ni0.65Co0.20Fe0.15 metal multilayers: (a) vapour deposited
Al-on-Ni0.65Co0.20Fe0.15 metal multilayers prior to oxidation; (b) after oxidation; and (c) charges
and oxygen concentration as a function of position across a multilayer interface.

adatom energy of 4.0 eV, a normal adatom incident angle, a substrate temperature of 300 K,
and an accelerated deposition rate of 2 nm ns−1. Another six aluminium monolayers were
subsequently deposited under the same conditions except for a lower adatom energy of 0.2 eV.
The resultant Al-on-Ni0.65Co0.20Fe0.15 surface is shown in figure 6(a). Oxidation of the Al-
on-Ni0.65Co0.20Fe0.15 surface was then simulated by exposing the crystal to a highly reactive
atomic oxygen vapour. An oxygen vapour temperature of 300 K and an oxygen atom vapour
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density of 0.0003 atoms Å−3 (corresponding to a pressure of approximately 10 atm) were
used. The abnormally high oxygen pressure accelerated the oxidation so that sufficient oxide
formed during the short timescale of the simulation. The charge was solved every 0.1 ps. The
simulated atomic structure of the crystal after 290 ps of oxidation is shown in figure 6(b). It
shows the formation of an aluminium oxide layer.

The CTIP + EAM potential should predict zero charges in local metal regions and
significant charges in oxide regions. To investigate this, the average charges on Al, Ni, Co, Fe,
and O atoms were calculated as a function of position across the simulated metal/metal oxide
interface and the results are shown in figure 6(c). The oxygen concentration as a function of
position along the crystal thickness direction is also superimposed in figure 6(c).

Figure 6(b) shows a successful direct MD simulation of the oxidation of a metal surface
that involves four different metal elements. An amorphous surface AlOx layer formed at
the low temperature, which is in good agreement with experiments. It can be seen from
figure 6(c) that the CTIP model predicted zero charge in the interior of the Ni0.65Co0.20Fe0.15

alloy. Towards the surface where the AlOx oxide formed, the aluminium charges rise until they
approach a value of +2 while oxygen charges reduce until they approach a value of −1. The
large magnitudes of charges correspond very well to regions where the oxygen concentration
is significant. The results shown in figures 4–6 demonstrate that the CTIP + EAM model has
captured much of the physics and chemistry needed to simulate the oxidation of the metallic
alloys.

6. Conclusions

EAM potentials have long been used for atomistic simulations of metal and metal alloy systems.
Here we have coupled a modified charge transfer ionic potential with existing embedded
atom method potentials and propose a set of parameters for study of the O–Al–Ni–Co–Fe
quinternary system. The potential parameters are optimized to accurately predict the cohesive
energies, lattice constants, elastic constants, and crystal structures of the four binary oxides:
the corundum phase of Al2O3, Fe2O3, and the B1 phase of CoO and NiO. The potential predicts
physically realistic charges and lattice cohesive energies over a wide range of lattice strain. We
have also showed that the dynamics of oxidation of an Al-on-Ni0.65Co0.20Fe0.15 metal surface
can be simulated by an MD method using this potential. The modified charge transfer ionic
potential successfully predicted zero charges in the interior of the metal alloy region and large
magnitudes of charge in the interior of the metal oxide. This potential appears to be well suited
for studies of atomic assembly during magnetic tunnel junction growth by vapour deposition
processes.
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